ADVISORY & INTELLIGENCE SERVICE PROGRAM

產業焦點評論

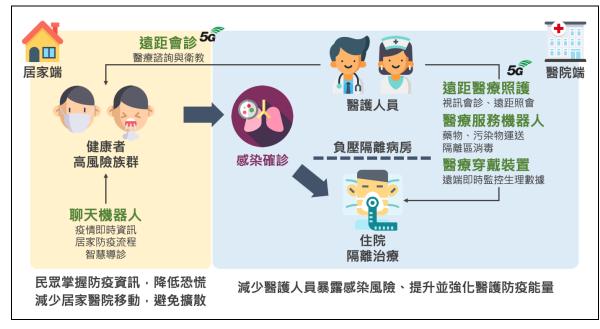
武漢肺炎防疫·智慧醫療的用「武」之地

前言

武漢肺炎疫情持續延燒,傳播力遠高於過去亦由冠狀病毒所引起的 SARS 與 MERS。 這次與冠狀病毒的第三度交手,全球的防疫能量是否更勝從前?隨著近年智慧醫療科 技的快速發展,結合逐步進入醫療垂直應用的 5G 通訊,讓全民與醫護人員皆掌握了 比過去更多、更有利的武器,如遠距醫療、機器人、穿戴裝置等皆在此次防疫前線貢 獻戰力。武漢肺炎對智慧醫療應用的試煉過程值得關注,亦將影響未來醫院導入智慧 科技的信心。

張浚凱

Document Code: CDOC20200219003 Publication Date: Feb 2020


Check out MIC on the Internet! https://mic.iii.org.tw/aisp

members @iii.org.tw downloaded this document at 2020/2/20 11:01:45. © Copyright Market Intelligence & Consulting Institute.

武漢肺炎延焼・考驗醫護能量

2019 年底自中國大陸武漢爆發新型冠狀病毒引起的傳染性肺炎(簡稱武漢肺炎, WHO 命名為 COVID-19),是繼 2003 年嚴重急性呼吸道症候群(Severe Acute Respiratory Syndrome, SARS)與 2012 年中東呼吸症候群(Middle East Respiratory Syndrome, MERS)後,第三次的冠狀病毒大流行。目前已知武漢肺炎 主要藉飛沫、接觸傳染,近日更被證實可透過氣溶膠(Aerosol)傳播。雖疫情集中 於武漢地區,但因病毒的高傳染力,加上陸海空旅運便捷,已蔓延至新加坡、泰國、 日本、韓國、台灣、澳洲、美國與英國等近 30 個國家,全球確診個案仍持續增加。

「減少接觸」是預防呼吸道傳染病的基本策略,故民眾需減少外出、避免到人潮密集的公共場所或醫院陪、探病等,若身體不適則戴口罩或行居家管理。一旦確診感染而入院治療,病患必須進入負壓隔離病房,無論出入口、空調管線、污染物處理等皆與院內其他區域實體隔離,以降低院內群聚感染的風險。醫護人員必須穿著全套防護裝備進入隔離病房診治,並以手機或院內通訊設備與隔離病房外的人員溝通。隔離治療不僅提高照護的難度,醫護人員更需承受高感染風險的壓力。當隔離病患快速增加,對醫療資源與醫護能量將是極大的考驗。整體來看,面對武漢肺炎的防疫做法似乎與 17 年前的 SARS 無明顯差異,但現在其實已有許多數位科技可實現過去醫療照護無法達成的任務,進而為全民與醫護人員提升防疫戰力。

圖一、智慧醫療在居家、醫院防疫的應用

 $\ensuremath{\mathbb{C}}$ 2020 Market Intelligence & Consulting Institute CDOC20200219003

資料來源: MIC · 2020年2月

聊天機器人、遠距會診輔助居家防疫

聊天機器人解答問題,成民眾防疫利器

防疫從全民做起,但因專業知識不足,網路、社群媒體上的資訊又十分龐雜,民眾不 僅難以消化亦難分辨其正確性,可能導致錯誤訊息的流傳,甚至造成全民過度恐慌而 使防疫出現困難。

在智慧型手機時代,「懂人話」的聊天機器人(Chatbot)成了為全民解惑的最佳工具。民眾對防疫相關的問題包羅萬象,例如身體不適是否需自主隔離、自己是否為高風險族群、實際的疫情數據以及居家防疫正確做法(如環境消毒或防護裝備的使用)等,而聊天機器人可以最新疫情資訊或防疫標準指引等作為資料庫,透過自然語言處理(Natural Language Processing, NLP)與人工智慧(Artificial Intelligence, AI) 理解民眾輸入的問題並給予正確答覆。亦可將常見問題設為清單或按鈕,讓民眾直接點選以省去文字輸入的麻煩。

2017 年國內疾病管制署與 HTC DeepQ 合作開發的「疾管家」聊天機器人於 LINE 正式上線,透過醫療自然語言處理(Medical Natural Language Processing, MNLP),提供民眾超過 90 種傳染病的防疫諮詢,如疫苗接種、預防性投藥、旅遊 醫學等。2019 年 5 月時已有超過 8 萬人次訂閱,在武漢肺炎疫情爆發的春節期間, 更一舉激增至 160 萬人次訂閱。除最新全球疫情、疑似感染的作法與就醫方式等資 訊外,口罩實名購買制施行後,疾管家更提供販售藥局與口罩庫存量的查詢服務。

圖二、「疾管家」聊天機器人

資料來源: MIC, 2020年2月

介醫師諮詢。

國外亦可見日本 Bespoke 公司的 Bebot 聊天機器人,不僅提供疫情新聞、預防措施, 更可作為偵測感染熱點(Hotspot)的輔助工具。美國新創公司 98point6 與 Buoy 的聊天機器人則皆採類似醫師問診的模式,若民眾自訴有疑似症狀,聊天機器人便依 據美國疾病管制與預防中心公布的指引,進一步詢問武漢肺炎相關的 TOCC(旅遊 史、職業史、接觸史、群聚史)以評估感染風險,再給予是否需到院檢查的建議或轉

居家遠距會診減少民眾到院·降低疫情擴散風險

當疫情流行時,民眾應減少外出與出入醫院,但若身體出現不適且聊天機器人亦無法 解決問題或使其安心時,便是居家虛擬照護(Virtual Care)一展長才的時機。民眾 可透過視訊與醫院的醫師進行遠距會診,將診間的服務移至家中,直接向醫師諮詢醫 療處置與衛教建議。遠距會診不僅省去民眾往返醫院的不便,更可落實減少出入醫院 的防疫策略,以降低感染風險及避免疾病擴散。

中國大陸的四川大學華西醫院與中興通訊合作打造 5G 遠距會診平台,在此次疫情中 採用遠距視訊為郊區民眾進行診治。美國新創公司 Bright.md 的虛擬照護平台則以 聊天機器人先對病患進行初步的問診,若判斷其可能感染武漢肺炎,則自動轉介病患 直接於家中與院內醫師進行遠距視訊會診,該平台已被美國及加拿大共15 間醫療機 構採用。

遠距、機器人、穿戴裝置減少醫護感染

「遠距親臨」的隔離照護模式

疫情擴散過程中,除社區群聚感染外,院內群聚感染更加危險。雖然確診感染的患者 在負壓隔離病房中可阻絕與院內其他病患的接觸、避免交叉感染,但其與第一線醫護 人員間的近距離接觸卻難以避免。美國疾病管制與預防中心於 2004 年的研究指出, SARS 疫情爆發期間,疫情嚴重的國家如台灣、加拿大、新加坡與越南等,醫護人員 感染占總案例的比例高達 37%至 63%,對當時的醫護能量造成極大的傷害。

若要降低醫護人員感染風險,除了完整的防護裝備與感控流程外,最根本的解決方式 就是盡可能拉開其與病患間的「距離」,減少非必要的接觸。此時,除了重症病患仍 需要積極介入與點滴注射,大部分輕症的隔離照護可藉由「遠距」模式進行。近年已 有許多公司推出應用於醫院中的遠距醫療解決方案,結合視訊裝置、行動醫療設備與 軟體平台,讓醫師不必至現場也能「親自」為病患診治。這種「遠距親臨」的醫療模 式原是為了使醫師能突破時空限制以服務更多病患,進而縮小醫師的人力缺口,卻恰 好能應用於醫護人員從遠端照護隔離病患,而大幅降低感染風險。

收治美國國內第一名武漢肺炎確診個案、位於華盛頓的 Providence Regional Medical Center,便在隔離病房中導入 InTouch Health 公司的 Vici 遠距醫療解決方案。Vici 的外觀類似小型、簡易的醫療推車,底部附三個滾輪的基座內含五小時續航力的電池,其上則配置高畫質鏡頭、螢幕、降噪喇叭、麥克風與外接聽診器等,由醫師在隔離病房外透過專用軟體操作進行醫治。以色列雖尚未有武漢肺炎確診案例,仍率先在 Sheba Medical Center 啟動冠狀病毒遠距醫療計畫,並導入 Vici 解決方案。

圖三、InTouch Health的 Vici 遠距醫療解決方案

資料來源: InTouch Health · MIC 整理 · 2020 年 2 月

醫療服務機器人:代替醫護進入高風險環境

雖然手術機器人向來是醫療機器人領域中最受熱議的應用,但在醫院的整體運作中, 有許多如送藥、收床單、環境消毒等非照護核心的工作,可透過自主移動的服務型機 器人、或稱機器人護理助理(Robotic Nursing Assistant, RoNA)輔助執行。因此, 以機器人代替醫護人員進入隔離區執行任務,除了減少與病患的非必要接觸,亦可降 低因身處病患所在區域,或接觸病患曾使用過的物品等導致的感染風險。

中國大陸的廣東省人民醫院與武漢市漢口醫院,皆導入賽特智能公司的物流機器人進 行隔離病房的藥品配送、污染物收集與運送等工作。武漢協和醫院、同濟天佑醫院與 上海第六人民醫院則採用達闥科技(CloudMinds)的5G機器人,除物品配送外, 亦自動化完成體溫巡測、環境清潔與消毒等。美國Xenex公司推出的紫外光消毒機 器人則開始導入美國與中國大陸收治武漢肺炎感染者的醫院中。

醫療級穿戴裝置:醫護的第二雙眼

呼吸道感染症患者需要時刻監測心率、體溫、呼吸率等生理數值,以判斷疾病進程並 給予醫療處置。然而,倚賴醫護人員定時至床邊進行量測,不僅造成接觸感染風險, 亦較不易在第一時間發現發燒或呼吸急促等異常變化。

醫療級穿戴裝置便可作為醫護人員的第二雙眼睛,遠端且即時地監控病患生理狀態。 如上海公共衛生臨床中心導入 VivaLNK 公司的穿戴式體溫連續監控感測器,為武漢 肺炎感染者測量體溫,數據會直接傳輸到醫院資訊系統,讓醫護人員能即時掌握。

智慧醫療與 5G 醫療應用的試煉

智慧醫療應用被推向武漢肺炎的防疫前線,除了讓智慧科技再次嶄露頭角,亦是一次 完整的試煉機會,考驗其如何在快速變化的疫情下,迅速就位並落實於防疫工作中。 而居家或醫院採用遠距醫療應用,皆需要良好的網路通訊支持,高速、低延遲的5G 通訊便成為重要的推力。隨著5G網路覆蓋率上升,中國大陸有許多醫院在武漢肺炎 的防疫中採用了基於5G通訊的遠距醫療或智慧應用,包含5G遠距會診與5G機器 人等。甚至因疫情需要而緊急建置的武漢雷神山、火神山醫院,更在搭建的同時布設 了5G基站,讓院內能全面使用5G網路,期望透過與其他醫院的醫師即時分享高解 析肺部斷層掃描影像進行遠距照會,在醫護人力有限的狀況下提高診療的效率。

智慧醫療應用與 5G 技術皆非武漢肺炎疫情爆發後才出現,但若其在這場戰「疫」中 表現亮眼,將有機會進一步推動更多醫院導入使用。且由於疫情難以預知,醫院的防 疫與感控工作皆需預先進行長期的建設與演練,並落實於臨床流程中,才能在疫情爆 發的第一時間發揮戰力,故可預期這一波醫院對智慧醫療應用的需求將不會隨著疫情 結束而消失。 members @iii.org.tw downloaded this document at 2020/2/20 11:01:45. © Copyright Market Intelligence & Consulting Institute

結論

成功的防疫需要全民與醫護的共同努力,而智慧科技則可助其一臂之力。民眾透過與 聊天機器人的對答,不僅可掌握防疫資訊,更能初步評估自身感染風險並加以示警; 遠距會診則讓民眾在家就能直接獲得醫師的專業建議。這些應用減少了民眾外出或進 出醫院而不慎感染的風險,資訊傳播的即時與暢通更能大幅降低民眾恐慌,進而強化 居家、社區端的防疫網絡。

醫院中輕症感染者的隔離治療則可藉助遠距醫療與穿戴裝置,讓醫護人員從遠端執行 照護工作,或以醫療服務機器人分擔隔離區中的例行任務,減少醫護人員因進出隔離 病房而暴露感染的風險,進而提升醫護的防疫能量與加強院內感控。

17 年前 SARS 爆發時,智慧科技應用於防疫前線或許令人難以想像,但隨著軟、硬體技術的快速發展,與 5G 網路通訊技術的加持,武漢肺炎防疫順勢成為智慧醫療與 5G 應用的試煉場域。若被驗證具正面效益,將提高醫院對於導入智慧科技與 5G 建設的信心,進而帶動智慧醫療產業與 5G 醫療垂直應用的發展。

附錄

英文名詞縮寫對照表

World Health Organization
Severe Acute Respiratory Syndrome
Middle East Respiratory Syndrome
Natural Language Processing
Artificial Intelligence
Medical Natural Language Processing
Travel, Occupation, Contact, Cluster
Robotic Nursing Assistant

中英文名詞對照表

氣溶膠	Aerosol
聊天機器人	Chatbot
虛擬照護	Virtual Care

Market Intelligence & Consulting Institute

發行所財團法人資訊工業策進會 產業情報研究所(MIC)地址台北市 106 敦化南路二段 216 號 19 樓電話(02)2735-6070傳真(02)2732-1353
電話 (02)2735-6070
傳直 (02)2732-1353
全球資訊網 https://mic.iii.org.tw
會員服務專線 (02)2378-2306
會員傳真專線 (02)2732-8943
E-mail members@micmail.iii.org.tw
AISP 會員網站 https://mic.iii.org.tw/aisp

以上研究報告經 MIC 整理分析所得,由於產業變動快速,並不保證上述報告於未來 仍維持正確與完整,引用時請注意發佈日期,及立論之假設或當時情境。 著作權所有,非經 MIC 書面同意,不得翻印或轉載